Add constant symbol list, which solves all the symbol allocation problems
[fur] / generation.py
index 9962bf3..4dfd115 100644 (file)
@@ -1,12 +1,17 @@
 import jinja2
 
+import transformation
+
 ENV = jinja2.Environment(
     autoescape=jinja2.select_autoescape([]),
     loader=jinja2.FileSystemLoader('templates'),
     trim_blocks=True,
 )
 
-def generate_argument(c_string_literal):
+def generate_integer_literal(c_integer_literal):
+    return 'integerLiteral({})'.format(c_integer_literal.value)
+
+def generate_string_literal(c_string_literal):
     def c_escape(ch):
         return {
             '\n': r'\n',
@@ -18,18 +23,77 @@ def generate_argument(c_string_literal):
         ''.join(c_escape(ch for ch in c_string_literal.value)),
     )
 
-def generate_statement(c_function_call_statement):
-    return '{}({});'.format(
-        c_function_call_statement.name,
-        ', '.join(generate_argument(argument) for argument in c_function_call_statement.arguments),
+def generate_symbol_expression(c_symbol_expression):
+    return 'Environment_get(environment, SYMBOL_LIST[{}] /* symbol: {} */)'.format(
+        c_symbol_expression.symbol_list_index,
+        c_symbol_expression.symbol,
+    )
+
+def generate_expression(c_argument):
+    if isinstance(c_argument, transformation.CNegationExpression):
+        return generate_negation_expression(c_argument)
+
+    if isinstance(c_argument, transformation.CFunctionCallExpression):
+        return generate_function_call(c_argument)
+
+    LITERAL_TYPE_MAPPING = {
+        transformation.CIntegerLiteral: generate_integer_literal,
+        transformation.CStringLiteral: generate_string_literal,
+        transformation.CSymbolExpression: generate_symbol_expression,
+    }
+
+    if type(c_argument) in LITERAL_TYPE_MAPPING:
+        return LITERAL_TYPE_MAPPING[type(c_argument)](c_argument)
+
+    INFIX_TYPE_MAPPING = {
+        transformation.CAdditionExpression: 'add',
+        transformation.CSubtractionExpression: 'subtract',
+        transformation.CMultiplicationExpression: 'multiply',
+        transformation.CIntegerDivisionExpression: 'integerDivide',
+        transformation.CModularDivisionExpression: 'modularDivide',
+    }
+
+    return 'builtin${}({}, {})'.format(
+        INFIX_TYPE_MAPPING[type(c_argument)],
+        generate_expression(c_argument.left),
+        generate_expression(c_argument.right),
+    )
+
+def generate_negation_expression(c_negation_expression):
+    return 'builtin$negate({})'.format(
+        generate_expression(c_negation_expression.value)
     )
 
+def generate_function_call(c_function_call):
+    return '{}({})'.format(
+        c_function_call.name,
+        ', '.join(generate_expression(argument) for argument in c_function_call.arguments),
+    )
+
+def generate_expression_statement(c_function_call_statement):
+    # TODO Do we need to garbage collect the results of arbitrary statements?
+    return '{};'.format(generate_expression(c_function_call_statement))
+
+def generate_assignment_statement(c_assignment_statement):
+    return 'Environment_set(environment, SYMBOL_LIST[{}] /* symbol: {} */, {});'.format(
+        c_assignment_statement.target_symbol_list_index,
+        c_assignment_statement.target,
+        generate_expression(c_assignment_statement.expression),
+    )
+
+def generate_statement(statement):
+    if isinstance(statement, transformation.CAssignmentStatement):
+        return generate_assignment_statement(statement)
+
+    return generate_expression_statement(statement)
+
 def generate(c_program):
     template = ENV.get_template('program.c')
     return template.render(
         builtins=list(sorted(c_program.builtins)),
         statements=[generate_statement(statement) for statement in c_program.statements],
-        standard_libraries=set(['stdio.h']),
+        standard_libraries=list(sorted(c_program.standard_libraries)),
+        symbol_list=c_program.symbol_list,
     )
 
 if __name__ == '__main__':