Add constant symbol list, which solves all the symbol allocation problems
[fur] / generation.py
1 import jinja2
2
3 import transformation
4
5 ENV = jinja2.Environment(
6     autoescape=jinja2.select_autoescape([]),
7     loader=jinja2.FileSystemLoader('templates'),
8     trim_blocks=True,
9 )
10
11 def generate_integer_literal(c_integer_literal):
12     return 'integerLiteral({})'.format(c_integer_literal.value)
13
14 def generate_string_literal(c_string_literal):
15     def c_escape(ch):
16         return {
17             '\n': r'\n',
18             '"': r'\"',
19             '\\': r'\\',
20         }.get(ch, ch)
21
22     return 'stringLiteral(runtime, "{}")'.format(
23         ''.join(c_escape(ch for ch in c_string_literal.value)),
24     )
25
26 def generate_symbol_expression(c_symbol_expression):
27     return 'Environment_get(environment, SYMBOL_LIST[{}] /* symbol: {} */)'.format(
28         c_symbol_expression.symbol_list_index,
29         c_symbol_expression.symbol,
30     )
31
32 def generate_expression(c_argument):
33     if isinstance(c_argument, transformation.CNegationExpression):
34         return generate_negation_expression(c_argument)
35
36     if isinstance(c_argument, transformation.CFunctionCallExpression):
37         return generate_function_call(c_argument)
38
39     LITERAL_TYPE_MAPPING = {
40         transformation.CIntegerLiteral: generate_integer_literal,
41         transformation.CStringLiteral: generate_string_literal,
42         transformation.CSymbolExpression: generate_symbol_expression,
43     }
44
45     if type(c_argument) in LITERAL_TYPE_MAPPING:
46         return LITERAL_TYPE_MAPPING[type(c_argument)](c_argument)
47
48     INFIX_TYPE_MAPPING = {
49         transformation.CAdditionExpression: 'add',
50         transformation.CSubtractionExpression: 'subtract',
51         transformation.CMultiplicationExpression: 'multiply',
52         transformation.CIntegerDivisionExpression: 'integerDivide',
53         transformation.CModularDivisionExpression: 'modularDivide',
54     }
55
56     return 'builtin${}({}, {})'.format(
57         INFIX_TYPE_MAPPING[type(c_argument)],
58         generate_expression(c_argument.left),
59         generate_expression(c_argument.right),
60     )
61
62 def generate_negation_expression(c_negation_expression):
63     return 'builtin$negate({})'.format(
64         generate_expression(c_negation_expression.value)
65     )
66
67 def generate_function_call(c_function_call):
68     return '{}({})'.format(
69         c_function_call.name,
70         ', '.join(generate_expression(argument) for argument in c_function_call.arguments),
71     )
72
73 def generate_expression_statement(c_function_call_statement):
74     # TODO Do we need to garbage collect the results of arbitrary statements?
75     return '{};'.format(generate_expression(c_function_call_statement))
76
77 def generate_assignment_statement(c_assignment_statement):
78     return 'Environment_set(environment, SYMBOL_LIST[{}] /* symbol: {} */, {});'.format(
79         c_assignment_statement.target_symbol_list_index,
80         c_assignment_statement.target,
81         generate_expression(c_assignment_statement.expression),
82     )
83
84 def generate_statement(statement):
85     if isinstance(statement, transformation.CAssignmentStatement):
86         return generate_assignment_statement(statement)
87
88     return generate_expression_statement(statement)
89
90 def generate(c_program):
91     template = ENV.get_template('program.c')
92     return template.render(
93         builtins=list(sorted(c_program.builtins)),
94         statements=[generate_statement(statement) for statement in c_program.statements],
95         standard_libraries=list(sorted(c_program.standard_libraries)),
96         symbol_list=c_program.symbol_list,
97     )
98
99 if __name__ == '__main__':
100     import unittest
101
102     unittest.main()