Go back to constructors and destructors
[fur] / transformation.py
1 import collections
2
3 import normalization
4 import parsing
5
6 CIntegerLiteral = collections.namedtuple(
7     'CIntegerLiteral',
8     [
9         'value',
10     ],
11 )
12
13 CStringLiteral = collections.namedtuple(
14     'CStringLiteral',
15     [
16         'index',
17         'value',
18     ],
19 )
20
21 CConstantExpression = collections.namedtuple(
22     'CConstantExpression',
23     [
24         'value'
25     ],
26 )
27
28 CVariableExpression = collections.namedtuple(
29     'CVariableExpression',
30     [
31         'variable',
32     ],
33 )
34
35 CSymbolExpression = collections.namedtuple(
36     'CSymbolExpression',
37     [
38         'symbol',
39         'symbol_list_index',
40     ],
41 )
42
43 CNegationExpression = collections.namedtuple(
44     'CNegationExpression',
45     [
46         'value',
47     ],
48 )
49
50 CFunctionCallForFurInfixOperator = collections.namedtuple(
51     'CFunctionCallForFurInfixOperator',
52     [
53         'name',
54         'left',
55         'right',
56     ],
57 )
58
59 CFunctionCallExpression = collections.namedtuple(
60     'CFunctionCallExpression',
61     [
62         'name',
63         'argument_count',
64         'argument_items',
65     ],
66 )
67
68 CSymbolAssignmentStatement = collections.namedtuple(
69     'CSymbolAssignmentStatement',
70     [
71         'target',
72         'target_symbol_list_index',
73         'expression',
74     ],
75 )
76
77 CArrayVariableInitializationStatement = collections.namedtuple(
78     'CArrayVariableInitializationStatement',
79     [
80         'variable',
81         'items',
82     ],
83 )
84
85 CVariableInitializationStatement = collections.namedtuple(
86     'CVariableInitializationStatement',
87     [
88         'variable',
89         'expression',
90     ],
91 )
92
93 CVariableReassignmentStatement = collections.namedtuple(
94     'CVariableReassignmentStatement',
95     [
96         'variable',
97         'expression',
98     ],
99 )
100
101 CExpressionStatement = collections.namedtuple(
102     'CExpressionStatement',
103     [
104         'expression',
105     ],
106 )
107
108 CIfElseStatement = collections.namedtuple(
109     'CIfElseStatement',
110     [
111         'condition_expression',
112         'if_statements',
113         'else_statements',
114     ],
115 )
116
117 CFunctionDeclaration = collections.namedtuple(
118     'CFunctionDeclaration',
119     [
120         'name',
121     ],
122 )
123
124 CFunctionDefinition = collections.namedtuple(
125     'CFunctionDefinition',
126     [
127         'name',
128         'statement_list',
129     ],
130 )
131
132 CProgram = collections.namedtuple(
133     'CProgram',
134     [
135         'builtin_set',
136         'function_definition_list',
137         'statements',
138         'standard_libraries',
139         'string_literal_list',
140         'symbol_list',
141     ],
142 )
143
144 EQUALITY_LEVEL_OPERATOR_TO_FUNCTION_NAME_MAPPING = {
145     '==':   'equals',
146     '!=':   'notEquals',
147     '<=':   'lessThanOrEqual',
148     '>=':   'greaterThanOrEqual',
149     '<':    'lessThan',
150     '>':    'greaterThan',
151 }
152
153 def transform_comparison_level_expression(accumulators, expression):
154     # Transform expressions like 1 < 2 < 3 into expressions like 1 < 2 && 2 < 3
155     if isinstance(expression.left, parsing.FurInfixExpression) and expression.left.order == 'comparison_level':
156         left = transform_comparison_level_expression(
157             accumulators,
158             expression.left
159         )
160
161         middle = left.right
162
163         right = transform_expression(
164             accumulators,
165             expression.right,
166         )
167
168         # TODO Don't evaluate the middle expression twice
169         return CFunctionCallForFurInfixOperator(
170             name='and',
171             left=left,
172             right=CFunctionCallForFurInfixOperator(
173                 name=EQUALITY_LEVEL_OPERATOR_TO_FUNCTION_NAME_MAPPING[expression.operator],
174                 left=middle,
175                 right=right,
176             ),
177         )
178
179     return CFunctionCallForFurInfixOperator(
180         name=EQUALITY_LEVEL_OPERATOR_TO_FUNCTION_NAME_MAPPING[expression.operator],
181         left=transform_expression(accumulators, expression.left),
182         right=transform_expression(accumulators, expression.right),
183     )
184
185 BUILTINS = {
186     'false':    [],
187     'pow':      ['math.h'],
188     'print':    ['stdio.h'],
189     'true':     [],
190 }
191
192 def transform_variable_expression(accumulators, expression):
193     return CVariableExpression(variable=expression.variable)
194
195 def transform_infix_expression(accumulators, expression):
196     if expression.order == 'comparison_level':
197         return transform_comparison_level_expression(accumulators, expression)
198
199     INFIX_OPERATOR_TO_FUNCTION_NAME = {
200         '+':    'add',
201         '-':    'subtract',
202         '*':    'multiply',
203         '//':   'integerDivide',
204         '%':    'modularDivide',
205         'and':  'and',
206         'or':   'or',
207     }
208
209     return CFunctionCallForFurInfixOperator(
210         name=INFIX_OPERATOR_TO_FUNCTION_NAME[expression.operator],
211         left=transform_expression(accumulators, expression.left),
212         right=transform_expression(accumulators, expression.right),
213     )
214
215 def transform_expression(accumulators, expression):
216     if isinstance(expression, parsing.FurParenthesizedExpression):
217         # Parentheses can be removed because everything in the C output is explicitly parenthesized
218         return transform_expression(accumulators, expression.internal)
219
220     if isinstance(expression, parsing.FurNegationExpression):
221         return transform_negation_expression(accumulators, expression)
222
223     if isinstance(expression, parsing.FurFunctionCallExpression):
224         return transform_function_call_expression(accumulators, expression)
225
226     if isinstance(expression, parsing.FurSymbolExpression):
227         if expression.value in ['true', 'false']:
228             return CConstantExpression(value=expression.value)
229
230         if expression.value not in accumulators.symbol_list:
231             symbol_list.append(expression.value)
232
233         return CSymbolExpression(
234             symbol=expression.value,
235             symbol_list_index=accumulators.symbol_list.index(expression.value),
236         )
237
238     if isinstance(expression, parsing.FurStringLiteralExpression):
239         value = expression.value
240
241         try:
242             index = accumulators.string_literal_list.index(value)
243         except ValueError:
244             index = len(accumulators.string_literal_list)
245             accumulators.string_literal_list.append(value)
246
247         return CStringLiteral(index=index, value=value)
248
249     LITERAL_TYPE_MAPPING = {
250         parsing.FurIntegerLiteralExpression: CIntegerLiteral,
251     }
252
253     if type(expression) in LITERAL_TYPE_MAPPING:
254         return LITERAL_TYPE_MAPPING[type(expression)](value=expression.value)
255
256     # TODO Handle all possible types in this form
257     return {
258         parsing.FurInfixExpression: transform_infix_expression, # TODO Shouldn't need this
259         normalization.NormalFunctionCallExpression: transform_function_call_expression,
260         normalization.NormalInfixExpression: transform_infix_expression,
261         normalization.NormalNegationExpression: transform_negation_expression,
262         normalization.NormalVariableExpression: transform_variable_expression,
263     }[type(expression)](accumulators, expression)
264
265 def transform_symbol_assignment_statement(accumulators, assignment_statement):
266     # TODO Check that target is not a builtin
267     if assignment_statement.target not in accumulators.symbol_list:
268         accumulators.symbol_list.append(assignment_statement.target)
269
270     return CSymbolAssignmentStatement(
271         target=assignment_statement.target,
272         target_symbol_list_index=accumulators.symbol_list.index(assignment_statement.target),
273         expression=transform_expression(
274             accumulators,
275             assignment_statement.expression,
276         ),
277     )
278
279 def transform_negation_expression(accumulators, expression):
280     return CNegationExpression(
281         value=transform_expression(accumulators, expression.internal_expression),
282     )
283
284 def transform_function_call_expression(accumulators, function_call):
285     if function_call.function.value in BUILTINS.keys():
286         # TODO Check that the builtin is actually callable
287         accumulators.builtin_set.add(function_call.function.value)
288
289     # TODO Use the symbol from SYMBOL LIST
290     return CFunctionCallExpression(
291         name=function_call.function.value,
292         argument_count=function_call.argument_count,
293         argument_items=transform_expression(accumulators, function_call.argument_items),
294     )
295
296 def transform_expression_statement(accumulators, statement):
297     # TODO At some point we can verify that all expression types are supported and just call transform_expression
298     expression = {
299         parsing.FurFunctionCallExpression: transform_function_call_expression,
300         parsing.FurInfixExpression: transform_expression,
301         parsing.FurIntegerLiteralExpression: transform_expression,
302         parsing.FurSymbolExpression: transform_expression,
303         normalization.NormalFunctionCallExpression: transform_function_call_expression,
304         normalization.NormalVariableExpression: transform_expression,
305     }[type(statement.expression)](accumulators, statement.expression)
306
307     return CExpressionStatement(
308         expression=expression,
309     )
310
311 def transform_if_else_statement(accumulators, statement):
312     return CIfElseStatement(
313         condition_expression=transform_expression(accumulators, statement.condition_expression),
314         if_statements=tuple(transform_statement(accumulators, s) for s in statement.if_statements),
315         else_statements=tuple(transform_statement(accumulators, s) for s in statement.else_statements),
316     )
317
318 def transform_array_variable_initialization_statement(accumulators, statement):
319     return CArrayVariableInitializationStatement(
320         variable=statement.variable,
321         items=tuple(transform_expression(accumulators, i) for i in statement.items),
322     )
323
324 def transform_variable_initialization_statement(accumulators, statement):
325     return CVariableInitializationStatement(
326         variable=statement.variable,
327         expression=transform_expression(accumulators, statement.expression),
328     )
329
330 def transform_variable_reassignment_statement(accumulators, statement):
331     return CVariableReassignmentStatement(
332         variable=statement.variable,
333         expression=transform_expression(accumulators, statement.expression),
334     )
335
336 def transform_function_definition_statement(accumulators, statement):
337     # TODO Allow defining the same function in different contexts
338     if any(fd.name == statement.name for fd in accumulators.function_definition_list):
339         raise Exception('A function with name "{}" already exists'.format(statement.name))
340
341     accumulators.function_definition_list.append(CFunctionDefinition(
342         name=statement.name,
343         statement_list=tuple(transform_statement(accumulators, s) for s in statement.statement_list)
344     ))
345
346     return CFunctionDeclaration(name=statement.name)
347
348 def transform_statement(accumulators, statement):
349     return {
350         parsing.FurAssignmentStatement: transform_symbol_assignment_statement,
351         parsing.FurExpressionStatement: transform_expression_statement,
352         normalization.NormalArrayVariableInitializationStatement: transform_array_variable_initialization_statement,
353         normalization.NormalExpressionStatement: transform_expression_statement,
354         normalization.NormalFunctionDefinitionStatement: transform_function_definition_statement,
355         normalization.NormalIfElseStatement: transform_if_else_statement,
356         normalization.NormalVariableInitializationStatement: transform_variable_initialization_statement,
357         normalization.NormalVariableReassignmentStatement: transform_variable_reassignment_statement,
358     }[type(statement)](accumulators, statement)
359
360
361 Accumulators = collections.namedtuple(
362     'Accumulators',
363     [
364         'builtin_set',
365         'function_definition_list',
366         'symbol_list',
367         'string_literal_list',
368     ],
369 )
370
371 def transform(program):
372     accumulators = Accumulators(
373         builtin_set=set(),
374         function_definition_list=[],
375         symbol_list=[],
376         string_literal_list=[],
377     )
378
379     statement_list = [
380         transform_statement(accumulators, statement) for statement in program.statement_list
381     ]
382
383     standard_library_set = set()
384     for builtin in accumulators.builtin_set:
385         for standard_library in BUILTINS[builtin]:
386             standard_library_set.add(standard_library)
387
388     return CProgram(
389         builtin_set=accumulators.builtin_set,
390         function_definition_list=accumulators.function_definition_list,
391         statements=statement_list,
392         standard_libraries=standard_library_set,
393         string_literal_list=accumulators.string_literal_list,
394         symbol_list=accumulators.symbol_list,
395     )
396
397
398 if __name__ == '__main__':
399     import unittest
400
401     unittest.main()